Prospects of argon as buffer gas in the stopping cell @ SHIPTRAP

Anton Roth

Supervisors: Dr. Sebastian Raeder & Oliver Kaleja

HGS-HIRe Summer Student Programme 2016

Mass measurements of heavy nuclei

- How heavy can elements be?
- Where is the island of stability?

Accurate masses are needed

SHIP

Sep 12, 2016

SHIPTRAP

- World record: ²⁵⁶Lr (Z = 103)
- 60 nb ²⁵⁶Lr =========15 nb ²⁵⁷Rf (Z = 104)
- A new stopping cell, the CryoCell
- Increased stopping and extraction efficiency

 $\omega_c = \frac{q}{m} B$

Can argon as the buffer gas in the stopping cell improve the efficiency of SHIPTRAP?

What now...

- The stopping cell
- Argon as the buffer gas
 - Stopping efficiency
 - Further properties
- Can argon improve the efficiency?

The CryoCell

The CryoCell

- Avoid neutralisation
- Thinner Ti-foil is foreseen
- Helium pressure limited by discharges
- Argon can potentially increase efficiency

Stopping efficiency simulations

- Reaction: ²⁰⁸Pb(⁴⁸Ca, 2n)²⁵⁴No
- Simulations with SRIM
 - Choice of ion
 - Initial kinetic energy distribution
 - Initial spatial distribution

9

Anton Roth @ HGS-HIRe $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

Kinetic energy distribution

Kinetic energy distribution

Simulation results

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Kinetic energy distribution

Energy distribution

Kinetic energy distribution

- Peak is shifted towards a larger thickness
- Higher stopping efficiency

Sep 12, 2016

Argon stopping efficiency

 90 % stopping efficiency of 12.5 mbar Ar at 3.2 μm thickness

Further properties of Ar

- RF-Funnel performance
 - Focusing
- Voltage breakdown
 - Discharges

Funnel performance

 The focusing force *F_{RF}* depends on the ion mobility *µ* and the RF-voltage *V_{RF}*:

Ref. M. Wada, Nucl. Inst. Meth. B 204 (2003) 570–581 **Table:** Mobility of ²⁵⁴No with 50 mbar He and 12.5 mbar Ar at T=300 K

Gas	μ (cm²/Vs)
Helium	0.033
Argon	0.016

Ref. M. Laatiaoui, PhD-thesis (2009) & H.W. Ellis et. al., Atomic data and Nuclear data tables (1976)

Funnel performance

 The focusing force *F_{RF}* depends on the ion mobility *µ* and the RF-voltage *V_{RF}*:

$$F_{RF} \propto \mu^2 V_{RF}^2$$

• For equal force with He & Ar:

$$\frac{V_{RF}(Ar)}{V_{RF}(He)} = \frac{\mu(He)}{\mu(Ar)} \approx 2$$

Table: Mobility of ²⁵⁴No with 50 mbar He and 12.5 mbar Ar at T=300 K

Gas	μ (cm²/Vs)
Helium	0.033
Argon	0.016

Ref. M. Laatiaoui, PhD-thesis (2009) & H.W. Ellis et. al., Atomic data and Nuclear data tables (1976)

Twice the RF-voltage is needed with Ar

Voltage breakdown

 RF-voltage breakdown: Ar vs. He in the CryoCell

Ref. M. Moravej et. al. J. Appl. Phys., Vol. 96, No. 12, (2004)

Can Ar improve the efficiency?

- Stopping efficiency: 77 % \rightarrow 90 %
- A similar RF-Funnel focusing force can be accomplished
- Ambiguities:
 - Charge state distribution
 - Real extraction efficiency

Spatial distribution

Negligible effect

Beam size too small compared to CryoCell dimensions

Choice of ion in SRIM

- SRIM exaggerates stopping power
- Extrapolation models are congruent with ²³⁸U