Stralsund, 2018

Low-lying states in 219 Ra and 215 Rn: sampling microsecond α -decaying nuclei

On behalf of the TASCA E115 Collaboration

May 9, 2018

Fast α :s	Correlation analysis	219 Ra \rightarrow^{215} Rn	Further decay chains	Conclusion
Outline				

- **1** Fast α :s
- Correlation analysis
- ${}_{\mathbf{3}} {}^{219}\text{Ra} \rightarrow {}^{215}\text{Rn}$
- Further decay chains
- Conclusion

[1] K. Valli, et al., Phys. Rev. C. 1, 6 (1970). [2] A. M. Y. El-Lawindy et al., J. Phys. G: Nucl. Phys., (1987). [3] R. K. Sheline, et al., Phys. Rev. C. 49, 2 (1994). [4] E. D. Hackett, et al., Phys. Rev. C. 40, 1234 (1989).

 $9/2^{+}$

4

 $^{215}_{86}$ Rn₁₂₉

 $2.3(10) \ \mu s$

7988

30.5

 219 Ra \rightarrow 215 Rn

Further decay chain

Conclusion

Evaluated decay scheme of 219 Ra $ightarrow ^{215}$ Rn

- Low lying levels in ²¹⁹Ra from Riley *et al.* 2000 [5].
- Weisskopf estimate for 17 keV *E*2 transition: 6 ms.
- Main focus: the existence of isomeric α-decaying 17 keV state in ²¹⁹Ra.

Correlation analysis Pixel by pixel correlated events

Event	
Pixel Time	
3 Beam ON/OFF	
A Silicon detector particle energies	
B Germanium detector photon ener	gies

Aim: Select the data for just one decay path, i.e. ${}^{219}\text{Ra} \rightarrow {}^{215}\text{Rn}$.

 219 Ra \rightarrow 215 Rn

Further decay chains

"imp- α_1 - α_2 " correlated events

²¹⁵ Th	²¹⁶ Th	²¹⁷ Th	²¹⁸ Th	²¹⁹ Th	²²⁰ Th	²²¹ Th	²²² Th	²²³ Th
²¹⁴ Ac	²¹⁵ Ac	²¹⁶ Ac	²¹⁷ Ac	²¹⁸ Ac	²¹⁹ Ac	²²⁰ Ac		²²² Ac
²¹³ Ra	²¹⁴ Ra	²¹⁵ Ra	²¹⁶ Ra			²¹⁹ Ra t _{1/2} : 10 ms		²²¹ Ra
²¹² Fr	²¹³ Fr	²¹⁴ Fr		$E_{\alpha}: \begin{array}{c} 7.68\\ 7.98 \end{array}$	MeV	²¹⁸ Fr _{1/2} : 20, 1 m	я	²²⁰ Fr
²¹¹ Rn	²¹² Rn			²¹⁵ Rn _{t1/2} : 2 μs	Εα	7.615 7.680 N 7.867	leV	²¹⁹ Rn
²¹⁰ At	²¹¹ At	$E_{\alpha}: 8.68$	MeV	214 At $_{1/2}^{(1)} \sim 0.5 \mu$	18		²¹⁷ At	²¹⁸ At
²⁰⁹ Po	²¹⁰ Po	²¹¹ Po _{t1/2} : 0.5 s	E_{α} :	8.772 8.820 M 8.877	eV	²¹⁵ Po	²¹⁶ Po	²¹⁷ Po
E_{α} : 7.45	MeV	²¹⁰ Bi	²¹¹ Bi	²¹² Bi	²¹³ Bi	²¹⁴ Bi	²¹⁵ Bi	²¹⁶ Bi
²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Pb	²¹⁰ Pb	²¹¹ Pb	²¹² Pb	²¹³ Pb	²¹⁴ Pb	²¹⁵ Pb

Fast α :sCorrelation analysis $^{219}Ra \rightarrow ^{215}Rn$ Further decay chainsConclusion"imp- α_1 - α_2 "correlated events

Fast α :sCorrelation analysis $^{219}R_{a} \rightarrow ^{215}R_{n}$ Further decay chainsConclusion"imp- α_1 - α_2 "correlated events

Energy of α_1 (MeV)

Fast α :sCorrelation analysis $^{219}\text{Ra} \rightarrow ^{215}\text{Rn}$ Further decay chainsConclusion" $\alpha_1 - \alpha_2 - \alpha_3$ "correlated events

A. Såmark-Roth, Stralsund 2018. 'Low-lying states in $^{219}\mathrm{Ra}$ and $^{215}\mathrm{Rn'}$

Correlation analysis

 $^{219}\mathrm{Ra}{\rightarrow}^{215}\mathrm{Rn}$

Further decay chains

Conclusion

Decay scheme 219 Ra $\rightarrow {}^{215}$ Rn

Correlation analysis

 219 Ra \rightarrow 215 Rn

Further decay chain

Conclusion

Decay scheme 219 Ra $\rightarrow {}^{215}$ Rn

Correlation analysis

 $^{219}\text{Ra} \rightarrow ^{215}\text{Rn}$

Further decay chair

Conclusion

Decay scheme 219 Ra \rightarrow^{215} Rn

Correlation analysis

 219 Ra \rightarrow 215 Rn

Further decay chair

Conclusion

Decay scheme 219 Ra $\rightarrow {}^{215}$ Rn

Correlation analysis

 $^{219}\text{Ra} \rightarrow ^{215}\text{Rn}$

Further decay chair

Conclusion

Decay scheme 219 Ra $\rightarrow {}^{215}$ Rn

A. Såmark-Roth, Stralsund 2018. 'Low-lying states in $^{219}\mathrm{Ra}$ and $^{215}\mathrm{Rn'}$

19

A. Såmark-Roth, Stralsund 2018. 'Low-lying states in $^{219}\mathrm{Ra}$ and $^{215}\mathrm{Rn'}$

20

Geant4 Simulations of 219 Ra \rightarrow^{215} Rn

- TASISpec experiment in a virtual Geant4 environment [6].
- 10 000 $^{219}\mathrm{Ra}$ were implanted 80 ± 5 MeV.
- Particle and photon spectra were normalised with a common factor.
- Decay scheme complexity built up step-by-step.
- σL of transitions w.r.t. yields in particle and photon spectra were optimised.

[6] L.G. Sarmiento, L.-L. Andersson, and D. Rudolph, Nucl. Instrum. Meth. A 667, 26-31 (2012).

A. Såmark-Roth, Stralsund 2018. 'Low-lying states in ²¹⁹Ra and ²¹⁵Rn'

Correlation analysis

 219 Ra \rightarrow 215 Rn

Counts/10 keV

Further decay chai

Conclusion

Geant4 Simulations of 219 Ra \rightarrow^{215} Rn

- Two branches with $E_{\alpha} = 7.66$ & 7.68 MeV were included.
- Branching ratios were varied for best match.

Particle-photon coincidence spectrum

Correlation analysis

 219 Ra \rightarrow 215 Rn

Further decay chains

Conclusion

Geant4 Simulations of ${}^{219}\text{Ra} \rightarrow {}^{215}\text{Rn}$

Photon coincidence spectrum

Correlation analysis

 $^{219}\mathrm{Ra}{\rightarrow}^{215}\mathrm{Rn}$

Further decay chains

Conclusion

Geant4 Simulations of 219 Ra \rightarrow 215 Rn

A. Såmark-Roth, Stralsund 2018. 'Low-lying states in ²¹⁹Ra and ²¹⁵Rn'

25

Summary of 219 Ra $ightarrow^{215}$ Rn

 219 Ra \rightarrow 215 Rn

Further decay chains

Conclusion

 $oldsymbol{lpha}$ decay of 219 Ra

	219 Ra		215 Rn
E_{lpha} (MeV)	$t_{1/2} \; ({\sf ms})$	Q_{lpha} (MeV)	E_f (keV)
$7.68(2)^{a}$	10(3)	$8.14(2)^{a}$	316
$7.66(2)^a$ 7.98(1)	10(3) 8(3)	$8.13(2)^a$ 8.13(2)	316 0
7.53(2) 7.21(2)		8.10(2) 8.15(2)	445 806

^{*a*}Guided by the simulation.

Summary of 219 Ra $ightarrow^{215}$ Rn

 219 Ra \rightarrow 215 Rn

Further decay chains

Conclusion

 $oldsymbol{lpha}$ decay of 219 Ra

	215 Rn		
E_{lpha} (MeV)	$t_{1/2}~({\sf ms})$	Q_{lpha} (MeV)	E_f (keV)
$7.68(2)^{a}$	10(3)	$8.14(2)^a$	316
$7.66(2)^a \\ 7.98(1)$	10(3) 8(3)	$8.13(2)^a$ 8.13(2)	316 0
7.53(2) 7.21(2)		8.10(2) 8.15(2)	445 806

^{*a*}Guided by the simulation.

Summary of 219 Ra $ightarrow^{215}$ Rn

 219 Ra \rightarrow 215 Rn

Further decay chains

Conclusion

 $oldsymbol{lpha}$ decay of 219 Ra

	215 Rn		
E_{lpha} (MeV)	$t_{1/2}~({\sf ms})$	Q_{lpha} (MeV)	E_f (keV)
$7.68(2)^{a}$	10(3)	8.14(2) ^a	316
$7.66(2)^a$ 7.98(1)	10(3) 8(3)	$8.13(2)^a$ 8.13(2)	316 0
7.53(2) 7.21(2)		8.10(2) 8.15(2)	445 806

 a Guided by the simulation.

Correlation analysis

 219 Ra \rightarrow 215 Rn

Further decay chains

Conclusion

Summary of 219 Ra \rightarrow^{215} Rn

A. Såmark-Roth, Stralsund 2018. 'Low-lying states in $^{219}\mathrm{Ra}$ and $^{215}\mathrm{Rn'}$

Further decay chains - starting with 220,221 Ra and 219 Fr

Nucleus	Correlation	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
²¹⁵ Rn ²²⁰ D	$\alpha_1 - \alpha_2^a - (\alpha_3)$	8.67(1)	8.674(8)
²²⁰ Ra 216 P n	(Imp^{o}) - α_{1}^{a} - α_{2} - α_{3}	7.46(1) 8.05(2)	7.453(7) 8.050(10)
²¹² Po	α_1 - α_2 - α_3 α_1 - α_2 - α_2^a	8.78(2)	8.78486(12)
219 Fr	(imp^b) - α_1^a - α_2 - α_3	7.32(1)	7.3123(18)
^{215}At	$\alpha_1 - \alpha_2^a - \alpha_3$	8.02(1)	8.026(4)
^{221}Ra	(imp b)- $lpha_1^a$ - $lpha_2$ - $lpha_3$	6.76(1)	6.754(5)
217 Rn	α_1 - α_2^a - α_3	7.74(1)	7.741(2)
213 Po	$\alpha_1 - \alpha_2 - \alpha_3^a$	8.37(1)	8.376(3)

 a Step corresponding to the isotope that is focused.

Further decay chains - starting with 220,221 Ra and 219 Fr

		Present Work	ENSDF
Nucleus	Correlation	$t_{1/2}$	2
^{215}Rn	α_1 - α_2^a -(α_3)	2.5(3) μs	2.30(10) µs
^{220}Ra	(imp^b) - $lpha_1^a$ - $lpha_2$ - $lpha_3$	19(3) ms	18(2) ms
216 Rn	$\alpha_1 - \alpha_2^a - \alpha_3$	29(4) µs	45(5) µs
212 Po	α_1 - α_2 - α_3^a	0.35(6) µs	0.299(2) µs
219 Fr	(imp b)- $lpha_1^a$ - $lpha_2$ - $lpha_3$	28(3) ms	20(2) ms
^{215}At	α_1 - α_2^a - α_3	37(3) µs	0.10(2) ms
^{221}Ra	(imp b)- $lpha_1^a$ - $lpha_2$ - $lpha_3$	16(2) s	28(2) s
217 Rn	α_1 - α_2^a - α_3	0.67(6) ms	0.54(5) ms
213 Po	α_1 - α_2 - α_3^a	3.5(3) µs	3.72(2) µs

^{*a*}Step corresponding to the isotope that is focused.

^bStep in the correlation search that was merely used to estimate the half-life.

Further decay chains - starting with 220,221 Ra and 219 Fr

		Present Work	ENSDF
Nucleus	Correlation	$t_{1/}$	2
215 Rn	α_1 - α_2^a -(α_3)	2.5(3) μs	2.30(10) µs
^{220}Ra	(imp^b) - α_1^a - α_2 - α_3	19(3) ms	18(2) ms
216 Rn	α_1 - α_2^a - α_3	29(4) µs	45(5) µs
212 Po	α_1 - α_2 - α_3^a	0.35(6) µs	0.299(2) µs
219 Fr	(imp^b) - $lpha_1^a$ - $lpha_2$ - $lpha_3$	28(3) ms	20(2) ms
^{215}At	α_1 - α_2^a - α_3	37(3) µs	0.10(2) ms
^{221}Ra	(imp b)- $lpha_1^a$ - $lpha_2$ - $lpha_3$	16(2) s	28(2) s
^{217}Rn	α_1 - α_2^a - α_3	0.67(6) ms	0.54(5) ms
²¹³ Po	α_1 - α_2 - α_3^a	3.5(3) µs	3.72(2) µs

 $^a {\sf Step}$ corresponding to the isotope that is focused.

^bStep in the correlation search that was merely used to estimate the half-life.

Measured half-lives differ significantly in the cases of:

- ²¹⁶Rn [1].
- ²¹⁹Fr & ²¹⁵At [7,8].
- ²²¹Ra [9].
- ²¹⁷Rn [10].

[1] K. Valli, et al., Phys. Rev. C. 1, 6 (1970).

[7] G. Bastin et al., J. Phys.(Paris) Suppl.No.1, Colloq.C1-181 (1968).

[8] G. Graeffe and P. Kauranen, J. Inorg. Nucl. Chem., 28 933–936 (1966).

- [9] P. A. Tove, Arkiv Fysik, 13 (1958).
- [10] C. P. Ruiz, United States (1961).

Conclusion

- An α -decay branch from the excited state at 17 keV in ²¹⁹Ra, unknown in previous decay spectroscopy experiments, is proposed.
- The results are consistent with Geant4 simulations.
- To gain more confidence in the nuclear structure interpretation further experimental studies are encouraged.
- Soon send around to co-authors.

Knut och Alice Wallenbergs

Correlation analysis

 219 Ra \rightarrow 215 Rn

Further decay chai

Conclusion

Geant4 Simulations of 219 Ra \rightarrow^{215} Rn

A. Såmark-Roth, Stralsund 2018. 'Low-lying states in ²¹⁹Ra and ²¹⁵Rn'

Correlation analysis

 219 Ra \rightarrow 215 Rn

Further decay chai

Conclusion

Geant4 Simulations of 219 Ra \rightarrow^{215} Rn

Particle spectrum

A. Såmark-Roth, Stralsund 2018. 'Low-lying states in ²¹⁹Ra and ²¹⁵Rn'

